The discretized Schroedinger equation for the finite square well and its relationship to solid-state physics
نویسندگان
چکیده
The discretized Schrödinger equation is most often used to solve onedimensional quantum mechanics problems numerically. While it has been recognized for some time that this equation is equivalent to a simple tightbinding model and that the discretization imposes an underlying bandstructure unlike free-space quantum mechanics on the problem, the physical implications of this equivalence largely have been unappreciated and the pedagogical advantages accruing from presenting the problem as one of solid-state physics (and not numerics) remain generally unexplored. This is especially true for the analytically solvable discretized finite square well presented here. There are profound differences in the physics of this model and its continuous-space counterpart which are direct consequences of the imposed bandstructure. For example, in the discrete model the number of bound states plus transmission resonances equals the number of atoms in the quantum well.
منابع مشابه
The discretized Schr ̈ odinger equation for the finite square well and its relationship to solid-state physics
The discretized Schrödinger equation is most often used to solve onedimensional quantum mechanics problems numerically. While it has been recognized for some time that this equation is equivalent to a simple tightbinding model and that the discretization imposes an underlying bandstructure unlike free-space quantum mechanics on the problem, the physical implications of this equivalence largely ...
متن کاملThe discretized Schroedinger equation and simple models for semiconductor quantum wells
The discretized Schrödinger equation is one of the most commonly employed methods for solving one-dimensional quantum mechanics problems on the computer, yet many of its characteristics remain poorly understood. The differences with the continuous Schrödinger equation are generally viewed as shortcomings of the discrete model and are typically described in purely mathematical terms. This is unf...
متن کاملAnalytic Equation of State for the Square-well Plus Sutherland Fluid from Perturbation Theory
Analytic expressions were derived for the compressibility factor and residual internal energy of the square-well plus Sutherland fluid. In this derivation, we used the second order Barker-Henderson perturbation theory based on the macroscopic compressibility approximation together with an analytical expression for radial distribution function of the reference hard sphere fluid. These properties...
متن کاملOptimization of A Thermal Coupled Flow Problem of Semiconductor Melts
In this paper we describe the formal Lagrange-technique to optimize the production process of solid state crystals from a mixture crystal melt. After the construction of the adjoint equation system of the Boussinesq equation of the crystal melt the forward and backward problems (KKT-system) are discretized by a conservative finite volume method.
متن کاملNumerical Simulation of the Incompressible Laminar Flow Over a Square Cylinder
Simulation of fluid flow over a square cylinder can be performed in order to understand the physics of the flow over bluff bodies. In the current study, incompressible laminar flow over a confined square cylinder, with variable blockage factor has been simulated numerically, using computational fluid dynamics (CFD). The focus has been on vortex-induced vibration (VIV) of the cylinder. Vorticity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013